
Surface Reconstruction from 3D Gaussian
Splatting via Local Structural Hints

Qianyi Wu1 , Jianmin Zheng2 , and Jianfei Cai1,2

1 Department of Data Science and AI, Monash University
2 College of Computing and Data Science, Nanyang Technological University

{qianyi.wu,jianfei.cai}@monash.edu, asjmzheng@ntu.edu.sg

Abstract. This paper presents a novel approach for surface mesh recon-
struction from 3D Gaussian Splatting (3DGS) [20], a technique renowned
for its efficiency in novel view synthesis but challenged for surface recon-
struction. The key obstacle is the lack of geometry hints to regulate the
optimization of millions of unorganized Gaussian blobs to align to the
true surface. This paper introduces local structural hints during train-
ing to address the challenge. We first leverage the prior knowledge from
monocular normal and depth estimations to refine the covariance and
mean of Gaussian primitives, enhancing their organization and providing
crucial normal information for surface extraction. However, due to the
highly discrete nature of Gaussian primitives, such geometry guidance
remains insufficient for the alignment with the true surface. We then
propose to construct a signed distance field by a moving least square
(MLS) function over the Gaussians in each local region. More impor-
tantly, we further propose to jointly learn a neural implicit network to
mimic and regularize the MLS function. The joint optimization helps
the optimization of Gaussian Splatting towards accurate surface align-
ment. Extensive experimental results demonstrate the effectiveness of
our method in achieving superior mesh quality compared with the SoTA
surface reconstruction for 3DGS. More resources can be found on our
project page: https://qianyiwu.github.io/gsrec.

Keywords: 3D Gaussian Splatting · Surface Reconstruction

1 Introduction

3D Gaussian Splatting (3DGS) [20] has garnered significant attention in the
realm of 3D computer vision for its exceptional efficiency in modeling 3D radiance
fields. Given multi-view images with corresponding camera poses, 3DGS initial-
izes Gaussian primitives from a sparse point cloud that comes from COLMAP [41]
and renders a novel view with a dedicated tile-based rasterization technique.
With the dynamic densification operation on Gaussians including splitting and
cloning, the final scene will be represented by millions of tiny Gaussians with
unparalleled rendering efficiency. Despite the superior rendering efficiency and
quality achieved by 3DGS over its implicit counterparts, Neural Radiance Field
(NeRF) [3,31,32], its surface reconstruction ability is largely lagging behind. The

https://orcid.org/0000-0001-8764-6178
https://orcid.org/0000-0002-5062-6226
https://orcid.org/0000-0002-9444-3763
https://qianyiwu.github.io/gsrec

2 Q. Wu, J. Zheng, J. Cai.

main reason is that a large number of discrete tiny Gaussians are noisy, unorga-
nized, and do not align well with the underlying geometry, making it challenging
to reconstruct the surface from them.

Prior efforts to address this intricate challenge of extracting surface meshes
from 3D Gaussian Splatting have been sparse. Notably, SuGaR [15] represents
a pioneering endeavor in this domain. SuGaR tries to align Gaussian primitives
more closely to the surface and encourages the Gaussians well distributed over
the surface. The cornerstone of SuGaR’s approach lies in designing two distinct
regularization losses. The first is a density regularization term, predicated on
the principle that the density at each query point should predominantly be in-
fluenced by only one Gaussian primitive. The second, a signed distance function
(SDF) regularization term, delves into the nuanced relationship between a point’s
density and its SDF relative to the nearest Gaussian, aiming to foster a more
precise alignment with the surface. SuGaR employs the Poisson surface recon-
struction [18] to extract the mesh from the aligned Gaussians, which is efficient
for obtaining a mesh in minutes. SuGaR also proposes an optional refinement
stage that binds Gaussian into the mesh for detailed optimization.

Despite these innovations, the meshes produced by SuGaR exhibit certain
imperfections, notably including undesirable bumps and holes in textureless ar-
eas due to inaccuracies in the learned Gaussian primitives. We also observe
the blocking artifacts resulting from SuGaR’s emphasis on preventing Gaussian
blobs from overlapping. These artifacts not only compromise the mesh’s visual
fidelity but also underscore the limitations of the regularization strategies in fully
capturing complex surface geometry in 3DGS. This triggers us to rethink the
problem and propose our new solution that centers on more accurate regulations
of Gaussian geometry during the training process.

The key insight of our approach is to leverage the local structure hints to guide
the optimization of Gaussians. Our primary idea involves the incorporation of ad-
ditional geometric guidance to refine the geometry attributes of Gaussian blobs.
By leveraging monocular surface normal predictions [11] of multiview images, we
guide the learning process of the covariance of each Gaussian by approximating
the normal with the eigenvector corresponding to the smallest eigenvalue. Ex-
tra geometry cues like monocular depth, can also be used to guide the learning
of Gaussian positions. With the carefully designed monocular-cue-based losses,
this simple idea not only directly enhances the alignment of Gaussians with the
actual surface, but also provides more guidance for the texture-less region learn-
ing. It particularly improves the alignment from Gaussians to the surface with
a rough orientation that mirrors the real-world geometry.

Although the improvements are afforded by monocular geometry cues, pre-
cise surface alignment remains elusive. Despite this, we recognize the potential
of Gaussian blobs to act as indicators for providing local geometry informa-
tion of the true surface. Drawing inspiration from the classical moving least
square (MLS) technique [21,42], the Gaussians inside a local region could define
a smooth interpolation function like signed distance function (SDF), which ap-
proximates the truth surface in the zero level-set. However, the local geometry

GSrec 3

information of the 3D Gaussians might not be consistent over a wider region. To
address this, we propose a novel regularizer that leverages a neural implicit net-
work to approximate the signed distance values of the MLS function at sampling
points and the normals at Gaussian means. Through the joint optimization be-
tween the neural implicit network prediction and the MLS function, we achieve
a significantly better alignment of Gaussians with the actual surface. Notably,
the neural implicit network only serves as a regularizer to propagate gradients
to Gaussians but is not used for the final surface reconstruction. After the model
convergence, we also take Poisson reconstruction with the optimized Gaussian
means and oriental normals to obtain the final mesh.

In addition to these methodological advancements, our framework incorpo-
rates a lightweight Gaussian Splatting architecture, Scaffold-GS [25], to enable
an improved surface reconstruction quality over prior art while reducing the
storage burden. Overall, we propose a new framework named GSrec for surface
reconstruction from 3D Gaussian Splatting, which leverages two types of local
structure hints, monocular normal (plus depth) and structured neural implicit
function, to improve Gaussian Splatting’s surface alignment and consistency.
Our contributions are summarized as follows:

– We incorporate the monocular normal guidance to augment Gaussians with
improved covariance attributes. Despite a simple idea, the corresponding
loss design is nontrivial. The monocular depth is also employed to guide
the Gaussian locations. These geometry guidances effectively improve the
surface alignment of Gaussians and help the learning in texture-less regions.

– We propose to predict the SDF of a true surface by applying MLS on the
obtained Gaussians. Moreover, to ensure geometry consistency, we propose
regularizing the MLS-based function prediction with a jointly learned neural
implicit field. This joint optimization results in a significant improvement in
the final surface extracted by Poisson reconstruction [18] over the surface-
aligned Gaussian means and normals.

– Extensive experiments demonstrate that our GSrec framework outperforms
the previous 3DGS surface reconstruction method by a large margin. Abla-
tion studies verify the effectiveness of individual components.

2 Related Work

Radiance Field Reconstruction from Multiview Images. 3D Radiance
Field has become a mainstream 3D reconstruction representation under the
paradigm of "analysis by synthesis" due to the innovative Neural Radiance Field
(NeRF) [31], which effectively promotes many downstream applications like novel
view synthesis [2], scene understanding [65] and SLAM [66]. Taking into multi-
view images with given camera poses, NeRF can establish volume density and
view-dependent radiance field using an implicit neural network [30, 35, 43]. The
established radiance field can synthesize images from new views by α-composed
volume rendering [29] along the casting rays. However, both training and ren-
dering speeds of NeRF are hindered due to the heavy network computation

4 Q. Wu, J. Zheng, J. Cai.

burden from intensive ray point sampling. To overcome this issue, several initia-
tives have been proposed to mitigate this burden for expedited rendering, which
mainly involves the explicit data structure like tensor [6], voxel grid [12, 45],
and hyperplanes [4, 5] in the data representation. Despite these improvements,
rendering efficiency remains a challenge in radiance field reconstruction.

A recent breakthrough, 3DGS [20], has emerged to effectively resolve this
problem and boost both rendering speed and fidelity. To avoid the intensive
query to the 3D space, 3DGS employs a carefully designed rasterization [67]
approach to enable efficient GPU computation [20] by representing the entire
scene as substantial Gaussian primitives. Each Gaussian primitive is endowed
with both appearance and shape parameters to facilitate backpropagation via
the rasterization-based rendering. However, despite 3DGS’s success in novel view
synthesis, their discrete, unorganized, geometrically unaligned massive Gaussians
pose a significant challenge for its adoption in surface reconstruction.
Surface Reconstruction for 3D Radiance Field. With the development
of radiance field reconstruction, the necessity to extract an explicit surface [40,
48, 60] from it has become increasingly important for downstream applications
like editing [13, 47, 49, 58, 64]. There are many successful attempts to obtain a
surface under the structure of neural implicit representation [37, 48]. One key
design is to predict the signed-distance function (SDF) by the network [61]. Two
seminal works, NeuS [51] and VolSDF [59], first proposed surface reconstruc-
tion under the NeRF structure by converting SDF to density to enable volume
rendering. The subsequent attempts further incorporate extra supervision such
as normal [50], depth [16,63], semantic [23,27,55–57] or dedicated training pro-
cess [22, 52] to improve the quality of the final reconstructed surface. However,
limited by the slow rendering of the NeRF structure, these approaches usually
suffer from long training time (e.g ., up to 12+ hours).

While 3DGS has greatly improved the radiance field efficiency, attempts
for its surface reconstruction remain challenging and important. For instance,
NeuSG [7] proposes to leverage the Gaussian Splatting to improve the surface
reconstruction of neural implicit surface [22,51]. However, as their surface is rep-
resented as NeuS [51], the training time remains as long as [22] for more than
15 hours. SuGaR [15] is a pioneer in working towards surface reconstruction
from 3DGS. The idea of SuGaR is to regulate the location and orientation of
a Gaussian to lie on the surface. They assume the Gaussians not only to stay
on the surface but also well-distributed. Consequently, they enforce each sam-
pled query point to be only dominated by a single Gaussian, where two types
of regularization are applied for density and SDF, respectively. These designs
can generate a coarse mesh with roughly correct geometry by performing Pois-
son surface reconstruction [18]. After that, they propose a refinement strategy
to bind Gaussians into the coarse triangle mesh and directly optimize it to get
a final output. Thanks to the efficiency of 3DGS, SuGaR can obtain a surface
mesh in less than 1 hour.

While SuGaR proposes the first solution for surface reconstruction from
Gaussian Splatting, the surface quality is often not satisfactory, containing block-

GSrec 5

Gaussian
Splatting

Geometry
Guidance

Joint neural
implicit MLS
optimization

Monocular
Normal/Depth
estimator

Poisson Surface
Reconstruction

Fig. 1: Overview of GSrec. GSrec first leverages the monocular geometry cue as
supervision to adjust the position and orientation of each 3D Gaussian primitive. Af-
ter that, we jointly optimize a neural implicit representation to approximate local
structural hints derived from Gaussian blobs in local regions. Finally, we use Poisson
reconstruction [18] to extract the mesh from optimized Gaussians.

ing artifacts and unexpected bumps due to the single Gaussian assumption.
Therefore, in this paper, we propose a new solution called GSrec. First, we in-
corporate the monocular normal and depth cues to better regulate the covariance
and means of Gaussian primitives. Unlike SuGaR which clearly distinguishes re-
spective Gaussians, we exploit the Gaussians in a local region to estimate an
implicit moving least square (MLS) function for computing SDF. Second, we
further propose to employ a neural implicit network to mimic and regularize
the MLS function. Finally, we adopt Poisson reconstruction [18] as SuGaR for
final mesh extraction. With the novel designs, our framework can well align the
Gaussians to the real surface.

3 Method

Given a set of M posed RGB images I = {I1, . . . , IM} with corresponding
camera parameters, 3DGS represents the scene as tons of Gaussian primitives.
Our primary goal is to reconstruct the scene geometry from 3D Gaussians by
aligning Gaussians with the real-world surface. This section introduces our novel
framework called GSrec, which includes several modules as shown in Fig. 1. We
will first introduce the preliminary knowledge of 3DGS in Sec. 3.1 and then
elaborate on the technical details of each core module.

3.1 Preliminary: 3D Gaussian Splatting and Its Variants

3D Gaussian Splatting [20] represents a 3D scene as a bunch of 3D Gaussian
blobs, each of which is defined by a set of attributes including location (mean)
µ ∈ R3, covariance matrix Σ ∈ R3×3, color c ∈ R3, and opacity o ∈ R. The
covariance matrix is further decomposed as Σ = RSSTRT with a diagonal
scaling matrix S ∈ R3×3 and a rotation matrix R ∈ R3×3. With these attributes,
a 3D Gaussian can be written as

G(x) = exp(−1

2
(x− µ)TΣ−1(x− µ)), (1)

6 Q. Wu, J. Zheng, J. Cai.

where x ∈ R3 is a random 3D point. By splatting 3D Gaussians onto the 2D
plane following Zwicker et al . [67], we obtain the projected 2D Gaussians G′(x)
and then utilize the α-composition [29,46] to obtain the color in the image plane
of an arbitrary viewpoint:

Ĉ =
∑
i

ciαi

i−1∏
j=1

(1− αj), (2)

where i is the index of sorted Gaussians along the ray and α is the opacity after
the 2D projection. Following [20], the means of 3D Gaussians are initialized from
Structure-from-Motion (SfM) [41] points, and their attributes are optimized by
the differentiable reconstruction loss on the given images.

As the sparsely initialized Gaussians may fail to represent scene details, 3DGS
introduces a densification operation that performs splits and merges for Gaus-
sians based on their training gradients. However, 3DGS usually consumes huge
storage for real scenes [8,25] due to the increased parameter number brought by
such a spawning process. To alleviate the heavy storage burden, we adopt a light
structural 3DGS framework Scaffold-GS [25] as our baseline model. Scaffold-GS
proposes to use learnable anchor points as seeds and generate new Gaussians
from these anchors along with their attributes (including color, opacity, and
covariance) using tiny decoders. This design significantly reduces the storage
requirement of 3DGS and more details can be found in [25].

3.2 Monocular Geometry Cue for 3DGS Optimization

While 3DGS mainly focuses on the image quality of view synthesis, it lags be-
hind in scene surface reconstruction. The most significant hurdle lies in that the
substantial Gaussians are unorganized, and their arbitrary orientations exhibit
non-negligible influence on the final surface reconstruction due to their discrete
property. Besides, sparsity and inaccuracy at their initialization from SfM add
up to the difficulty of providing geometry information in texture-less regions.

To address the above issues, our first thought is to leverage the monocular
geometry cues [11] to guide the 3DGS training, including both surface normal
and depth. As a key indicator of the local 3D geometry, surface normal can
provide a crucial hint to determine the orientation of a Gaussian blob. To be
specific, the covariance of a Gaussian blob is controlled by a scaling matrix
S = diag(s1, s2, s3) ∈ R3×3 and a rotation matrix R = [r1, r2, r3] where ri ∈ R3

is the column vector of the rotation matrix. The normal can be approximated
by the steepest ascent or descent direction of the density function in Eq. (1). In
other words, we approximate the directional normal n of each Gaussian as the
column vector of R corresponding to the minimum diagonal element of S.

We adapt the rendering of tiled-based rasterization [20] to accumulate the
normals of all Gaussians. The rendered normal N̂ can be calculated similarly to

GSrec 7

Eq. (2) as follows:

N̂ =
∑
i

niαi

i−1∏
j=1

(1− αj), ni = rki , k = argmin(s1i , s
2
i , s

3
i). (3)

As N̂ is in the world coordinate system while the estimated monocular normal N̄
is defined in the camera coordinate system [11, 17], we normalize the rendered
normal and apply the rotation transformation according to the given camera
pose for the loss calculation. With a slight abuse of notation, we denote the
adjusted rendered normal as N̂ ′ and apply the following normal consistency loss
with monocular normal guidance N̄ during training:

Lnormal = ∥N̄ − N̂ ′∥2 + ∥1− N̄T N̂ ′∥2. (4)

This loss encourages the orientation of each Gaussian to align with the local sur-
face normal. To further enhance the physical geometric property of the Gaussian
normal ni, we add a regularization term for the scaling matrix S to flatten the
Gaussians. Without loss of the generality, we assume s1 is the minimum scal-
ing value, and define our regularization term using this minimum value and the
harmonic mean as Lreg = ∥s1∥1 + ∥ s2

s3 + s3

s2 − 2∥1. Herein, the second term dis-
courages the Gaussian from degenerating into a needles-like shape, preventing
normal ambiguity as more than one scaling value approaches zero. These care-
fully designed losses facilitate Gaussian primitives to converge to orientations
aligned with local geometry characteristics. In addition, the estimated Gaus-
sian normal can also serve as a point normal and benefit the subsequent surface
reconstruction method like Poisson reconstruction [18].

In addition to the local geometry cue like surface normal to guide the co-
variance learning, we can also adopt the monocular depth to guide the training
of the Gaussian mean. Inspired by the depth rendering from [15, 19, 26, 28], we
also incorporate such a design in our framework by rendering the depth with the
z-coordinate zi of Gaussian mean µi in the camera coordinate system:

D̂ =
∑
i

ziαi

i−1∏
j=1

(1− αj), (5)

and optimizing it using a depth loss with monocular depth hint D̄:

Ldepth = ∥D̄ − (aD̂ + b)∥2, (6)

where a, b are scaling and shift parameters solved by given sampling rays to align
non-metric depth D̄ with our metric rendering depth D̂ [38, 39,63].

3.3 Neural Implicit Network for Regularization

With the guidance of monocular geometry cues, we have now augmented each
Gaussian blob. However, we observe that the monocular geometry guidances

8 Q. Wu, J. Zheng, J. Cai.

Gaussian
Splatting

After
optimization

Joint neural implicit
MLS optimization

IMLS

Neural implicit SDF

ℒ,-.(,)
Back Propagation
Gradient

ℒ/0&1*%'+(,)

ℒ%*2)'&3(,)

ℒ4)*'+(,)

▽!9:; ()

!9:;()
▽!9:; ()Sample points

Gaussian means

!<9:=()

Backpropagation

Backpropagation

Fig. 2: Joint optimization of 3DGS and neural implicit representation. We
propose a novel strategy to further align the Gaussians with the surface. We jointly
train a neural implicit function approximating the MLS function and normal derived
from Gaussians for regularization. The final Gaussians will align the surface more
accurately to produce a better mesh.

cannot ensure a perfect alignment with the surface, due to the discrete and
sparse nature of Gaussians. If the Poisson reconstruction is directly applied to
the 3D Gaussians at this stage, it may lead to over-noisy geometry.

To address this, we need to regularize the scene SDF. Recall that SuGaR [15]
introduces an SDF regularization term, which approximates the SDF of a point
with its distance to the rendered depth. However, the regularization term is not
accurate, since it is derived based on the assumption that the density of a point
is determined by the nearest Gaussian, the approximated relationship between a
point’s density and its SDF, and the approximation of the rendered depth. This
motivates us to propose a better regularization design.

We take inspiration from a conventional method called implicit moving least
square (IMLS) function [9, 21, 24, 42]. The definition of the IMLS function is
given as: For a set of 3D points P = {µl ∈ R3} with each point equipped with
a unit normal vector nl, a signed distance function from a query point x ∈ R3

to µl can be represented as ⟨x − µl,nl⟩, where ⟨·, ·⟩ is the inner product. We
can define an implicit function by weighted averaging of all point-wise signed
distance functions as

F (x) :=

∑
µl∈P θl(∥x− µl∥)⟨x− µl,nl⟩∑

µl∈P θl(∥x− µl∥)
, (7)

where θl(·) is a weight function, e.g . an RBF function [42]. As proved by Kool-
luri [21], this IMLS function F is a tight approximation of the SDF of the original
surface in a narrow band region. As we have augmented the Gaussians with the
normal attributes in Sec. 3.2, we can also define a similar function by treating all
Gaussian means as P and define the weight function θl(x) as the multiplication
of opacity and the Gaussian density function, i.e. θl(x) = olGl(x):

FIMLS(x) =

∑L
l=1 olGl(x)⟨x− µl,nl⟩∑L

l=1 olGl(x)
. (8)

GSrec 9

As the weight function θl(·) decays with x getting away from the mean µl, this
function can be evaluated at a local region to accelerate computation. This local
function tells where the surface is through the zero-level set [21].

With the IMLS function, we obtain an implicit function FIMLS from explicit
Gaussians. However, each place in FIMLS is largely based on geometry hints
derived from Gaussian blobs in a local region, which lacks structure and global
consistency. This motivates us to propose to jointly learn a neural implicit SDF
FMLP based on an efficient backbone, i.e. Instant-NGP [32], which is good for
modeling SDF efficiently and in a structured and global-consistent way. Our
key idea is to use FMLP to approximate FIMLS while at the same time FMLP is
serving as a regularizer for FIMLS (see Fig. 2). In particular, we define the joint
optimization loss as

Ljoint =
∑
x,µl

(∥FIMLS(x)−FMLP(x)∥2+∥ ∇FMLP(µl)

∥∇FMLP(µl)∥
−nl∥2+(∥∇FMLP(x)∥2−1)2)),

(9)
where the first and second terms are the zero-order and first-order constraints,
and the third term is the commonly used eikonal constraint [14] for FMLP. We use
the rendered depth D̂ in Eqn.(5) to back-project 2D pixels into 3D points, then
conduct random jittering to construct the set of sampling points x ∈ X . The loss
function will backpropagate the gradients to both the Gaussian Splatting field
and the neural SDF. Our experiments will show that such a joint training scheme
significantly improves the reconstructed surface, which encourages the Gaussian
primitives close to the true surface, likely due to the inductive smoothness bias
of implicit representation [1, 14,36,62].

In addition to the vanilla IMLS definition, we further introduce a Robust
IMLS (RIMLS) by applying a 1-D Gaussian kernel inputted with the norm of
the difference between the normalized gradient ∇FMLP at query point x and
the Gaussian normal [34,53]. Specifically, the weight function for θl is defined as
θl(x) = olGl(x)ϕ(∥nl− ∇FMLP(x)

∥∇FMLP(x)∥∥), where ϕ is defined the 1-D kernel with vari-
ance σ2

n, i.e. ϕ(x) = exp(−x2/σ2
n). Consequently, the joint loss Ljoint is defined

by replacing FIMLS with FRIMLS. Details can be found in the supplementary.

3.4 Model Training

The primary goal of our model is to optimize the 3D Gaussian attributes for
better surface reconstruction. At first, we train the model with the color recon-
struction loss as in original 3DGS [20] together with the monocular cue related
losses in Sec. 3.2. The overall loss function at this stage is

Lstage1 = Lcolor + λdLdepth + λnLnormal + λrLreg, (10)

where λd, λn, λr are the loss tradeoff weights. Following the Scaffold-GS [25]
design, the anchor points will stop growing or pruning after 15000 iterations.
Once the number of anchors is fixed, we start the joint optimization by involving
Ljoint till the end. The total loss at this later stage is defined as

Lstage2 = Lcolor + λdLdepth + λnLnormal + λrLreg + λjLjoint, (11)

10 Q. Wu, J. Zheng, J. Cai.

O
ffi

ce
4

R
oo

m
 0

R
oo

m
1

SuGaR (density) SuGaR (SDF) Ours

Fig. 3: Qualitative results on Replica [44]. The surface produced by our approach
achieves better quality compared with SuGaR [15] owing to the structural hints.

where λj is the loss weight for Ljoint. After the optimization, we use 3D Gaus-
sian means and normals for Poisson surface reconstruction [18] to extract the
reconstructed meshes.

4 Experiments

Implementation details. We implement our GSrec based on Scaffold-GS [25]
framework using PyTorch. Our experiments were run on a 24GB NVIDIA RTX
3090 GPU. We set the λd, λn, λr, λj in Eqn.(11) as 0.1, 0.1, 0.01, 1 respectively.
The total training iterations is set as 30000 following 3DGS [20]. The monocu-
lar geometry cues used in Sec. 3.2 are extracted by Omnidata [11]. The neural
implicit network used in Sec. 3.3 adopts the multi-resolution hash grid [32] em-
bedding with a level of 16 followed by a two-layer tiny MLP for fast convergence
during training. We initialize the MLP weights following the geometric initializa-
tion [14]. We randomly sample 8192 pixels in the image to construct the sampling
set X . We set L = 50 in calculating the IMLS/RIMLS function. To facilitate
the efficiency of MLS calculation, we constrain only utilizing these Gaussian
locations within a radius of 0.01 of sampling points for computation.
Dataset and metrics. We conduct our experiments on 1) Replica [44] is a syn-
thesized dataset with accurate camera poses and ground truth mesh for evalua-
tion. we use 8 scenes from Replica for experiments. For quantitative evaluation of
surface quality, we measure Chamfer Distance, Normal Consistency Score and F-
score with a threshold of 5cm on Replica. 2) ScanNet [10] is a real-world dataset
captured with challenging image quality. Following the setting [16, 63], 4 scenes
are selected from ScanNet for experiments and compared ours with both the

GSrec 11

Table 1: The quantitative results of the scene reconstruction on 8 Replica
scenes. We compare our method against the SoTA surface reconstruction method for
3D Gaussian Splatting [15] in terms of Chamfer distance and F-score.

Chamfer distance↓ room0 room1 room2 office0 office1 office2 office3 office4 average

SuGaR (density) [15] 8.84 9.79 12.59 7.89 14.31 11.24 9.54 12.06 10.78
SuGaR (SDF) [15] 7.28 8.10 10.85 7.11 14.51 9.98 8.64 10.09 9.57
GSrec (Ours) 6.08 6.08 9.97 5.20 7.10 8.31 6.74 7.16 7.08

F-score ↑ room0 room1 room2 office0 office1 office2 office3 office4 average

SuGaR (density) [15] 52.93 46.66 39.68 54.50 34.63 45.64 52.48 41.97 46.06
SuGaR (SDF) [15] 60.93 55.45 47.88 61.39 32.71 49.84 57.48 51.11 52.10
GSrec (Ours) 76.02 70.47 61.70 77.60 58.31 60.95 63.03 69.66 67.22

state-of-the-art neural implicit surface methods and Gaussian-splatting-based
methods. More details can be found in the Sec. A of supplementary.
Baseline Methods. We mainly compare our method with the recent represen-
tative works in the realm of 3D Gaussian Splatting in surface reconstruction.
-SuGaR [15] (SDF/density). SuGAR is the first attempt to reconstruct a
surface mesh from Gaussian Splatting. The idea of SuGAR is to enforce the
Gaussian primitive to align with the real surface by applying density or SDF
regularization terms during training. We term these two variants as SuGaR
(SDF)/(density). To further enhance the quality of the final reconstructed mesh,
SuGaR proposes an extra refinement stage to adjust the new Gaussian attached
to the coarse mesh from the first stage. We compared the final refinement mesh
from SuGaR with our output. Note that we maintain the Poisson depth param-
eter the same for both our approach and SuGaR for a fair comparison.
-Scaffold-GS [25] w monocular geometry cue (Scaffold-GS+N/D). As
our base model is Scaffold-GS, we add several variants of it for comparison. We
add additional monocular geometry guidance including depth and normal cues
to regulate Scaffold-GS training. Since we have the Gaussian means and the
normals for this baseline, we can also apply [18] to extract a mesh from it.

4.1 Experimental results on Replica

Comparison with the previous approach. SuGaR [15] is the most represen-
tative approach for surface reconstruction from Gaussian Splatting. We provide
the quantitative results of all scene reconstruction in Replica in Tab. 1 where our
method outperforms both of SuGaR’s variants with a clear margin. The octree
depth for Poisson reconstruction is set as the same for both SuGaR and our
approach for fair comparison. As seen from Fig. 3, the surface reconstruction of
SuGaR still contains substantial undesired artifacts in the flat region. We found
that SuGaR (density) is not as good as SuGaR (SDF). The main drawback of
utilizing density regularization lies in that it forces the density of each query
point to be dominated by one single Gaussian, which leads to significant block-
ing artifacts. Although SuGaR (SDF) achieves better quality, the inaccurate
depth in the texture-less region such as walls in Fig. 3 still leads to the bumps
of output mesh. The derivation of SDF regularization [15] is also based on the

12 Q. Wu, J. Zheng, J. Cai.

Table 2: Ablation study on Replica. We compared the key components with the
variants of [25] including the guidance and the joint optimization.

Method Geometry Guidance MLS design Reconstruction metric
Normal Depth IMLS RIMLS Normal-C ↑ F-score ↑

(a) Scaffold-GS [25]+D ✗ ✓ ✗ ✗ 66.53±2.56 55.33±6.29
(b) Scaffold-GS [25]+N ✓ ✗ ✗ ✗ 80.03±2.85 65.28±7.11
(c) Scaffold-GS [25]+N&D ✓ ✓ ✗ ✗ 80.32±2.42 64.00±7.29

(d) (b)+joint IMLS ✓ ✗ ✓ ✗ 83.96±3.17 65.46±8.67
(e) (b)+joint RIMLS ✓ ✗ ✗ ✓ 83.99±2.63 66.04±8.34
(f) Full model (Ours) ✓ ✓ ✗ ✓ 85.23±2.38 67.22±7.26

Reference Image Scaffold-GS + D

+Joint iMLS
optimization Full model

Scaffold-GS + N Scaffold-GS + N&D + Joint IMLS Full Model

Fig. 4: Reconstructed surface by ablating proposed components on
Replica [44]. Our approach significantly improves the quality of the final mesh.

single Gaussian assumption, which potentially makes the output mesh rough.
Our approach takes inspiration from MLS for better SDF estimation near Gaus-
sians and uses a novel implicit network as a regularizer. Our framework benefits
from the geometry hints provided by monocular prediction, which gives more
guidance in Gaussian location and orientation optimization. Together with the
joint optimization design, the final output surface achieves the best quality on
surface reconstruction. Notably, the average training time of our approach on
this dataset is about 40 minutes, which is similar to SuGaR. In terms of storage,
thanks to the Scaffold-GS baseline, our framework only takes about 45MB for
each scene while the size of the SuGaR model is more than 150MB.
Ablation study. To clarify our framework’s key contributions, we showcase the
effectiveness of its individual modules by answering these insightful questions.
-1) How does monocular geometry cue help reconstruction? Our first
key design is to incorporate monocular normal guidance into the training. It
provides very important hints about the Gaussian orientation, which also sig-
nificantly improves the quality of Poisson reconstruction. As shown in Fig. 4
and Tab. 2, the inaccurate normal estimated by the density gradient will lead to
a degraded iso-surface estimation compared with Scaffold-GS+D and Scaffold-
GS+N. We discover the naive incorporation of depth guidance will slightly impair
the F-score, which might be due to the inaccurate depth calculation in Eqn.(5).
As a result, it remains an open problem to find an accurate depth rendering solu-
tion for the 3DGS structures. Notably, in our approach, we incorporate sampling
points near depth to jointly optimize the neural implicit model. Although the
depth rendering might be not accurate enough, our joint optimization could also
benefit from it to construct the sampling set X and lead to better reconstruction.
-2) What is the role of joint optimization with the neural network
regularizer? A key novelty of our framework is to utilize the neural implicit

GSrec 13

Table 3: Ablation study about the joint MLS optimization and the MLS
computation. We provide an in-depth analysis by verifying the effectiveness of the
joint optimization loss and the number of Gaussians used in the MLS computation.

Normal-C↑ F-score↑
w/o MLS term 84.15 64.55
w/o gradient term 81.38 63.56
w/o eikonal term 84.64 66.62
Full joint loss 85.23 67.22

Normal-C↑ F-score↑
L=1 84.49 64.52
L=10 84.63 65.25
L=30 85.03 65.28
Ours (L=50) 85.23 67.22

(a) Ablation study about the joint loss(b) The number of Gaussians for MLS

network as a regularizer. To delve into its functionality, we show the results
by ablation study over the MLS-based joint optimization. By comparing the
methods (b), (d) and (e) in Tab. 2, we find the normal consistency score (Normal-
C) obtains significant improvement. This is because both variants of the MLS
function in joint optimization can increase the alignment of Gaussians and true
surface, which can be demonstrated in Fig. 4. From Tab. 2, we observe the
normal consistency and F-score are better by using RIMLS. Compared with the
vanilla MLS function which only depends on the Gaussian means and normal,
the extra normal difference weights could somehow capture more details of the
surface [34]. To further inspect the functionality of joint optimization, we conduct
the following ablation studies to better understand the mechanism.
-3) Which part of Ljoint is more important? The joint loss in Eqn.(11)
uses a neural implicit network to approximate the local structural hints derived
from Gaussians for joint optimization. There are three parts of joint loss: an
MLS term that uses MLP to approximate MLS function, a gradient term by
minimizing the gradient of MLP with Gaussian normal, and an eikonal term
to regulate the MLP itself to predict valid SDF. As given in Tab. 3 (a), we
found that with only first-order constraint (w/o MLS term), the method can
also improve slightly in terms of F-score but benefit a lot in normal consistency
(compared with method (c) in Tab. 3). The gradient term is crucial in joint
optimization, which provides strong constraints for the MLP [1]. While keeping
the MLS term with the gradient term in the joint loss (w/o eikonal term), the
F-score can be significantly improved thanks to the zero-order approximation of
the MLS value. The eikonal constraint on the MLP itself could further regulate
the implicit part leading to a better final surface reconstruction.
-4) How does Gaussian number contribute? One key insight difference
between our solution and SuGaR [15] lies in the treatment of different Gaus-
sian numbers contributing to surface estimation. To demonstrate the superiority
of considering multiple Gaussians rather than one, we ablate the choice of L
when calculating RIMLS. As given in Tab. 3 (b), although L = 1 has achieved
good results, the F-score keeps improving as L gets increased. As the Gaussian
Splatting is a sparse and discrete representation, we argue that using a weighted
average for multiple Gaussians could increase the accuracy of the zero level-set
estimation. Consequently, the SDF estimation of our approach provides a more
accurate structural hint compared to SuGaR.

14 Q. Wu, J. Zheng, J. Cai.

Table 4: Scene-level 3D Reconstruction on ScanNet. (a) The quantitative re-
sults of several neural implicit surface reconstruction methods and the 3DGS-based
approaches [15] (b) Reconstructed surface by SuGaR [15] and our approach.

Chamfer-L1↓F-score ↑
COLMAP [41] 0.141 0.537
UNISURF [33] 0.359 0.267
NeuS [51] 0.194 0.291
VolSDF [59] 0.267 0.346
Manhattan-SDF [16] 0.070 0.602
MonoSDF (Grid) [63] 0.064 0.626
MonoSDF (MLP) [63] 0.042 0.733
SuGaR (density) 0.284 0.217
SuGaR (SDF) 0.269 0.184
Ours 0.068 0.599

SuGaR GSrec (ours) GroundTruth
(a) Comparision with SOTA approaches (b) Reconstructed Mesh visualization

4.2 Experimental results on real-world dataset

To further investigate our method to the real-world dataset, we evaluate our ap-
proach on the challenging ScanNet [10] dataset, which contains motion blur and
inaccurate camera poses. We compare with previous strong baselines of neural
implicit surface [16,33,51,59,63] and the 3DGS-based approach SuGaR [15]. As
reported in Tab. 4 (a), we find that our approach is comparable with Manhattan-
SDF [16] and the MonoSDF [63] in which multi-resolution grid embedding [32]
is utilized, while our training time is 12× less (less than 1 hour v.s. more than 12
hours) compared over those neural implicit network-based ones thanks to struc-
ture of 3DGS. This shows the potential ability of 3DGS to achieve high-quality
surface reconstruction for real-world capture. Although the MonoSDF (MLP)
adopts pure MLP structure which shows robustness to the camera noise, the
training time of such a variant gets much longer than others.

Regarding SuGaR [15], which is built over the same 3DGS structure, it is
significantly impaired by the noisy camera poses and the inferior image quality
and outputs unsatisfied reconstruction results, as shown in Tab. 4 (b). On the
contrary, in our approach, the monocular geometry cues provide extra guidance
to effectively prevent unexpected Gaussian blobs in the empty space, and the
neural implicit network regularization also helps improve the smoothness.

5 Conclusion

We have presented a novel framework coined GSrec to address the challenge
of misalignment between Gaussians and real-surface for surface reconstruction
from 3DGS, leveraging monocular geometry cue and neural implicit networks as
regularization to enhance mesh precision and quality. Our approach significantly
outperforms existing methods, showcasing 3DGS’s potential for detailed and
accurate surface reconstruction.

GSrec 15

Acknowledgement

We sincerely thank Yihang Chen for proofreading. This work is partly supported
by the Monash FIT Start-up Grant and MOE AcRF Tier 1 Grant of Singapore
(RG12/22).

References

1. Atzmon, M., Lipman, Y.: Sald: Sign agnostic learning with derivatives. In: ICLR
(2021) 9, 13

2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. ICCV (2021) 3

3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf
360: Unbounded anti-aliased neural radiance fields. CVPR (2022) 1

4. Cao, A., Johnson, J.: Hexplane: A fast representation for dynamic scenes. In:
CVPR. pp. 130–141 (2023) 4

5. Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., De Mello, S., Gallo,
O., Guibas, L.J., Tremblay, J., Khamis, S., et al.: Efficient geometry-aware 3d
generative adversarial networks. In: CVPR. pp. 16123–16133 (2022) 4

6. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In:
ECCV. pp. 333–350. Springer (2022) 4

7. Chen, H., Li, C., Lee, G.H.: Neusg: Neural implicit surface reconstruction with 3d
gaussian splatting guidance. arXiv preprint arXiv:2312.00846 (2023) 4

8. Chen, Y., Wu, Q., Lin, W., Harandi, M., Cai, J.: Hac: Hash-grid assisted context for
3d gaussian splatting compression. In: European Conference on Computer Vision
(2024) 6, 2

9. Cheng, Z.Q., Wang, Y., Li, B., Xu, K., Dang, G., Jin, S.: A survey of methods for
moving least squares surfaces. In: VG/PBG@ SIGGRAPH. pp. 9–23 (2008) 8

10. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
Net: Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017) 10,
14, 3

11. Eftekhar, A., Sax, A., Malik, J., Zamir, A.: Omnidata: A scalable pipeline for
making multi-task mid-level vision datasets from 3d scans. In: ICCV. pp. 10786–
10796 (2021) 2, 6, 7, 10

12. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance fields without neural networks. In: CVPR. pp. 5501–5510 (2022) 4

13. Gao, L., Yang, J., Zhang, B.T., Sun, J.M., Yuan, Y.J., Fu, H., Lai, Y.K.: Mesh-
based gaussian splatting for real-time large-scale deformation. arXiv preprint
arXiv:2402.04796 (2024) 4

14. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric reg-
ularization for learning shapes. In: ICML (2020) 9, 10

15. Guédon, A., Lepetit, V.: Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. In: CVPR (2024) 2, 4, 7, 8,
10, 11, 13, 14

16. Guo, H., Peng, S., Lin, H., Wang, Q., Zhang, G., Bao, H., Zhou, X.: Neural 3d
scene reconstruction with the manhattan-world assumption. In: CVPR (2022) 4,
10, 14, 3

16 Q. Wu, J. Zheng, J. Cai.

17. Kar, O.F., Yeo, T., Atanov, A., Zamir, A.: 3d common corruptions and data aug-
mentation. In: CVPR. pp. 18963–18974 (2022) 7

18. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceed-
ings of the fourth Eurographics symposium on Geometry processing. vol. 7, p. 0
(2006) 2, 3, 4, 5, 7, 10, 11

19. Keetha, N., Karhade, J., Jatavallabhula, K.M., Yang, G., Scherer, S., Ramanan,
D., Luiten, J.: Splatam: Splat, track map 3d gaussians for dense rgb-d slam. arXiv
(2023) 7

20. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (July
2023) 1, 4, 5, 6, 9, 10

21. Kolluri, R.: Provably good moving least squares. ACM Transactions on Algorithms
(TALG) 4(2), 1–25 (2008) 2, 8, 9

22. Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-fidelity neural surface reconstruction. In: CVPR (2023) 4

23. Li, Z., Lyu, X., Ding, Y., Wang, M., Liao, Y., Liu, Y.: Rico: Regularizing the
unobservable for indoor compositional reconstruction. In: ICCV (2023) 4

24. Liu, S.L., Guo, H.X., Pan, H., Wang, P.S., Tong, X., Liu, Y.: Deep implicit moving
least-squares functions for 3d reconstruction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1788–1797 (2021)
8, 2

25. Lu, T., Yu, M., Xu, L., Xiangli, Y., Wang, L., Lin, D., Dai, B.: Scaffold-gs: Struc-
tured 3d gaussians for view-adaptive rendering. In: CVPR (2024) 3, 6, 9, 10, 11,
12, 1

26. Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. In: 3DV (2024) 7

27. Lyu, X., Chang, C., Dai, P., Sun, Y.t., Qi, X.: Total-decom: Decomposed 3d scene
reconstruction with minimal interaction. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 20860–20869 (2024) 4

28. Matsuki, H., Murai, R., Kelly, P.H.J., Davison, A.J.: Gaussian Splatting SLAM.
In: CVPR (2024) 7

29. Max, N.: Optical models for direct volume rendering. IEEE Transactions on Visu-
alization and Computer Graphics 1(2), 99–108 (1995) 3, 6

30. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: CVPR (2019) 3

31. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020) 1, 3

32. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM TOG. 41(4), 102:1–102:15 (Jul 2022)
1, 9, 10, 14, 2

33. Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces and
radiance fields for multi-view reconstruction. In: ICCV (2021) 14, 4

34. Öztireli, A.C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces
based on non-linear kernel regression. In: Computer graphics forum. vol. 28, pp.
493–501. Wiley Online Library (2009) 9, 13

35. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: CVPR (2019) 3

36. Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Ben-
gio, Y., Courville, A.: On the spectral bias of neural networks. In: International
Conference on Machine Learning. pp. 5301–5310. PMLR (2019) 9

GSrec 17

37. Rakotosaona, M.J., Manhardt, F., Arroyo, D.M., Niemeyer, M., Kundu, A.,
Tombari, F.: Nerfmeshing: Distilling neural radiance fields into geometrically-
accurate 3d meshes. In: 3DV (2024) 4

38. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction.
ICCV (2021) 7

39. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.
IEEE Transactions on Pattern Analysis and Machine Intelligence 44(3) (2022) 7

40. Reiser, C., Garbin, S., Srinivasan, P.P., Verbin, D., Szeliski, R., Mildenhall, B., Bar-
ron, J.T., Hedman, P., Geiger, A.: Binary opacity grids: Capturing fine geometric
detail for mesh-based view synthesis. arXiv preprint arXiv:2402.12377 (2024) 4

41. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR. pp.
4104–4113 (2016) 1, 6, 14, 2

42. Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit
surfaces from polygon soup. In: ACM SIGGRAPH 2004 Papers, pp. 896–904 (2004)
2, 8

43. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. In: NeurIPS (2019) 3

44. Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J.,
Mur-Artal, R., Ren, C., Verma, S., et al.: The replica dataset: A digital replica of
indoor spaces. arXiv preprint arXiv:1906.05797 (2019) 10, 12

45. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In: CVPR. pp. 5459–5469 (2022) 4

46. Tagliasacchi, A., Mildenhall, B.: Volume rendering digest (for nerf) (2022) 6
47. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: Dreamgaussian: Generative gaussian

splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653 (2023)
4

48. Tang, J., Zhou, H., Chen, X., Hu, T., Ding, E., Wang, J., Zeng, G.: Delicate
textured mesh recovery from nerf via adaptive surface refinement. In: ICCV (2023)
4

49. Waczyńska, J., Borycki, P., Tadeja, S., Tabor, J., Spurek, P.: Games: Mesh-based
adapting and modification of gaussian splatting. arXiv preprint arXiv:2402.01459
(2024) 4

50. Wang, J., Wang, P., Long, X., Theobalt, C., Komura, T., Liu, L., Wang, W.: Neuris:
Neural reconstruction of indoor scenes using normal priors. In: ECCV (2022) 4

51. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. In:
NeurIPS (2021) 4, 14

52. Wang, Y., Skorokhodov, I., Wonka, P.: Hf-neus: Improved surface reconstruction
using high-frequency details. In: NeurIPS. vol. 35, pp. 1966–1978 (2022) 4

53. Wang, Z., Wang, P., Wang, P., Dong, Q., Gao, J., Chen, S., Xin, S., Tu, C., Wang,
W.: Neural-imls: Self-supervised implicit moving least-squares network for surface
reconstruction. arXiv preprint arXiv:2109.04398 (2021) 9

54. Wang, Z., Wang, P., Wang, P., Dong, Q., Gao, J., Chen, S., Xin, S., Tu, C., Wang,
W.: Neural-imls: Self-supervised implicit moving least-squares network for surface
reconstruction. IEEE Transactions on Visualization and Computer Graphics pp.
1–16 (2023). https://doi.org/10.1109/TVCG.2023.3284233 2

55. Wu, Q., Liu, X., Chen, Y., Li, K., Zheng, C., Cai, J., Zheng, J.: Object-
compositional neural implicit surfaces. In: ECCV (2022) 4

https://doi.org/10.1109/TVCG.2023.3284233
https://doi.org/10.1109/TVCG.2023.3284233

18 Q. Wu, J. Zheng, J. Cai.

56. Wu, Q., Wang, K., Li, K., Zheng, J., Cai, J.: Objectsdf++: Improved object-
compositional neural implicit surfaces. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (2023) 4

57. Wu, T., Zheng, C., Cham, T.J., Wu, Q.: Clusteringsdf: Self-organized neural im-
plicit surfaces for 3d decomposition. arXiv preprint arXiv:2403.14619 (2024) 4

58. Yan, H., Li, Y., Wu, Z., Chen, S., Sun, W., Shang, T., Liu, W., Chen, T., Dai, X.,
Ma, C., et al.: Frankenstein: Generating semantic-compositional 3d scenes in one
tri-plane. arXiv preprint arXiv:2403.16210 (2024) 4

59. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. In: NeurIPS (2021) 4, 14

60. Yariv, L., Hedman, P., Reiser, C., Verbin, D., Srinivasan, P.P., Szeliski, R., Barron,
J.T., Mildenhall, B.: Bakedsdf: Meshing neural sdfs for real-time view synthesis.
In: SIGGRAPH (2023) 4

61. Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Ronen, B., Lipman, Y.:
Multiview neural surface reconstruction by disentangling geometry and appear-
ance. In: NeurIPS (2020) 4

62. Yifan, W., Wu, S., Oztireli, C., Sorkine-Hornung, O.: Iso-points: Optimizing neural
implicit surfaces with hybrid representations. In: CVPR (2020) 9

63. Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: Monosdf: Exploring monoc-
ular geometric cues for neural implicit surface reconstruction. In: NeurIPS (2022)
4, 7, 10, 14, 1, 3

64. Yuan, Y., Li, X., Huang, Y., De Mello, S., Nagano, K., Kautz, J., Iqbal, U.: Ga-
vatar: Animatable 3d gaussian avatars with implicit mesh learning. arXiv preprint
arXiv:2312.11461 (2023) 4

65. Zhi, S., Laidlow, T., Leutenegger, S., Davison, A.: In-place scene labelling and
understanding with implicit scene representation. In: ICCV (2021) 3

66. Zhu, Z., Peng, S., Larsson, V., Xu, W., Bao, H., Cui, Z., Oswald, M.R., Pollefeys,
M.: Nice-slam: Neural implicit scalable encoding for slam. In: CVPR (2022) 3

67. Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Ewa volume splatting. In: Pro-
ceedings Visualization, 2001. VIS ’01. pp. 29–538 (2001) 4, 6

GSrec 1

–Appendix–
This document includes the supplementary information of our main doc-

ument. We provide more details about our experiments in Sec. A, including
implementation details, metric design, and dataset acquisition. In the following
section, we provide more experimental results on Replica and Scannet in Sec. B
and Sec. C respectively. Finally, we discuss the limitation of our framework in
Sec. D.

A More details about experiments

We provide more details about the experiment, including the dataset preprocess,
implementation details, and evaluation metric definition.

A.1 More Implementation details

Our implementation is based on Scaffold-GS [25]. Following [25], we set an opac-
ity MLP, covariance MLP, and color MLP to decode the corresponding attributes
for each spawn Gaussian. We set the anchor feature size as 32. As the main focus
of our framework targets at surface reconstruction, we take the anchor feat as
input for opacity MLP and covariance MLP to get the opacity, covariance, and
scaling for each spawns Gaussian, while using the concatenated feature by anchor
feature and view direction encoding for the color MLP to get the view-depend
appearance, which is different with original design. We set the neural implicit
network following the structure of Instant-NGP [32]. For the experiments con-
ducted in Replica, we used the Poisson octree depth as 8 for surface extraction.
We adopt the default train/test split for the Replica dataset. For ScanNet, we
follow the experimental design of MonoSDF [63] which uses the entire dataset
for training and evaluating the surface quality. We set the voxel size to 0.001
for the initial anchor point construction. We provide the training overview in
Fig. A.1.

Monocular cue for GS
 Stage1 loss

Total iterations:
 30,000

Start joint optimization

Iteration: 15000

Joint optimization
 Stage2 loss

Start anchor densification
Iteration: 1500

End anchor densification

Fig.A.1: The training progress of our framework. We follow the Scaffold-GS to
start anchor densification in 1500 iterations. Once the anchors stop growing or pruning,
we add the neural implicit network for joint optimization to regulate the Gaussians
attributes till the end of training.

2 Q. Wu, J. Zheng, J. Cai.

We provide more details about the point sampling strategy used in our frame-
work for the joint optimization of neural implicit representation. Firstly, we use
the depth rendered by the Gaussians to un-project a 2D pixel into a 3D point.
To guarantee the effectiveness of the point in the calculation of MLS, we propose
to find the nearest Gaussian for this point and use the corresponding Gaussian
to generate a new candidate with its mean and covariance. We will use this new
point and its nearest L Gaussians to calculate the MLS function. As suggested
in [24,54], we use the sampling points to construct a sphere with a radius of 0.01
and only use these Gaussians inside the sphere for the MLS function calculation.

A.2 The dataset for training

We use Replica and ScanNet for experiments. We use the ground camera poses
for both datasets to train our model. To obtain the sparse point cloud used
for 3D Gaussian Splatting, we use those ground truth camera poses and rerun
COLMAP [41] to construct the initial point cloud. We also trained SuGaR with
the ground truth camera pose and the initialized sparse point cloud for compar-
ison.

We also normalized the camera pose to make sure the scene is located in a
unit cube for the construction of instant-ngp [32] hash embedding. While this can
also be implemented dynamically using the anchor point to set the normalized
factor [8].

A.3 Metric for evaluating surface reconstruction

The definition of the evaluation metrics we used in the main document is given
in Table. A.1.

Metric Definition

Accuracy meanp∈P(minq∈Q ∥p− q∥1)
Completeness meanq∈Q(minp∈P ∥p− q∥1)
Chamfer-L1 0.5 * (Accuracy + Completeness)
Precision meanp∈P(minq∈Q ∥p− q∥1) < 0.05
Recall meanq∈Q(minp∈P ∥p− q∥1) < 0.05
F-score 2 ∗ Precision ∗ Recall/(Precision+Recall)

Table A.1: Evaluation Metric Calculation. We provide the equation for computing
the quantitative metric used in the experiment. Given the sampled point cloud from
ground-truth P and predicted result Q, all the metrics can be calculated as shown
above.

GSrec 3

A.4 Details about RIMLS

The detailed equation of RIMLS is defined as follows:

FRIMLS(x) =

∑L
l=1 olGl(x)ϕ(∥nl − ∇FMLP(x)

∥∇FMLP(x)∥∥)⟨x− µl,nl⟩∑L
l=1 olGl(x)ϕ(∥nl − ∇FMLP(x)

∥∇FMLP(x)∥∥)
. (12)

As mentioned in the main document, the ϕ is defined as a 1-D Gaussian kernel
with a variance of σ2

n. The σn is set as 0.05 in our implementation.

B More results on Replica

To further investigate the benefits of joint optimization, we conducted additional
experiments focused on using an implicit network to fit normal-augmented Gaus-
sians.

For this purpose, we targeted Gaussians derived from Scaffold+N&D [25] and
employed an identical implicit network structure for fitting. The training process
utilized the same loss functions as in our joint optimization scheme, Ljoint. The
critical variable in our experiment was the application of joint optimization for
updating the Gaussians. We visualized the resulting meshes by the implicit net-
work through Marching Cubes, as depicted in Fig. B.1. Our findings reveal that
without joint optimization, the implicit function tends to fit more high-frequency
noise as the number of iterations increases, leading to a less smooth surface. Con-
versely, the use of joint optimization yields a smoother, more accurate surface
by regulating the Gaussians’ positions and orientations. This regulation not only
mitigates the tendency to fit low-frequency details early on but also refines the
Gaussians’ attributes for better surface alignment. Notably, meshes generated
through our method exhibited some floating elements in empty spaces, attributed
to isolated Gaussians. However, by employing Poisson reconstruction for surface
construction from the final Gaussians, our approach demonstrates robustness
against such noisy and outlier Gaussians, ensuring cleaner, more coherent mesh
outputs.

C More results on ScanNet

We provide more comprehensive results on ScanNet [10] in Tab. C.1. Our ap-
proach achieves a comparable performance with Manhattan-SDF [16] and MonoSDF
(Grids) [63] in all metrics, which demonstrates a strong potential ability of 3DGS
to produce a high-quality surface mesh.

D Discussion about Limitations

While our method achieves superior quality in many aspects, our analysis re-
veals a noticeable gap when compared to the current state-of-the-art in surface

4 Q. Wu, J. Zheng, J. Cai.

Early stage Middle stage Final stage

w
/o

 jo
in

t o
pt

im
iz

at
io

n
w

/ j
oi

nt
 o

pt
im

iz
at

io
n

Training stage:

Fig. B.1: Comparison of the mesh produced by performing Marching Cube
from the implicit network. The top row shows the mesh produced by the neural im-
plicit network without joint optimization of the Gaussians and the bottom row depicts
the mesh from the implicit network with joint optimization. We noticed that without
joint optimization, the implicit function will fit the high-frequency noise as the training
goes on. The joint optimization regulates the orientation and position of Gaussians to
obtain a better surface alignment Gaussian Splatting field.

reconstruction. A promising direction for future work is the incorporation of ap-
pearance guidance, which can enable a more precise capture of detailed geometry,
thereby lessening our method’s dependence on pre-trained models. Furthermore,
revisiting and potentially revising the Gaussian assumption inherent in our 3D
Gaussian Splatting (3DGS) approach could yield more accurate models for den-
sity estimation, enhancing surface reconstruction fidelity. These areas represent
valuable opportunities for future research, signaling our commitment to pushing
the boundaries of what is achievable in surface reconstruction quality.

Accuracy ↓ Completeness ↓ Chamfer-L1 ↓ Precision ↑ Recall ↑ F-Score ↑

UNISURF [33] 0.554 0.164 0.359 0.212 0.362 0.267
Neus [51] 0.179 0.208 0.194 0.313 0.275 0.291
VolSDF [59] 0.414 0.120 0.267 0.321 0.394 0.346
Manhattan-SDF [16] 0.072 0.068 0.070 0.621 0.586 0.602
MonoSDF (Grids) [63] 0.072 0.057 0.064 0.660 0.601 0.626
MonoSDF (MLP) [63] 0.035 0.048 0.042 0.799 0.681 0.733

SuGaR [15](density) 0.398 0.170 0.284 0.189 0.255 0.217
SuGaR [15](SDF) 0.328 0.211 0.269 0.179 0.189 0.184

Ours 0.067 0.069 0.068 0.604 0.594 0.599

Table C.1: The quantitative results of the scene reconstruction on ScanNet.

	Surface Reconstruction from 3D Gaussian Splatting via Local Structural Hints

